
1) Calculate the packing efficiency of a face-centered cubic structure of atoms with a diameter of 1.00 $\hbox{Å}$ (100 pm).

The atoms along the diagonal of a face tough each other!

Triangle:

$$a^{2} + a^{2} = (2 d)^{2}$$

 $2a^{2} = 4.00 \text{ Å}^{2} \implies a = 1.41 \text{ Å}$

Volume of the cell: $V = a^3 = (1.41 \text{ Å})^3 = 2.80 \text{ Å}^3$

4 Atoms in the unit cell: 1/8 of the 8 corners and 6 face shared (= x 0.5) atoms.

The volume of a sphere is given as $V=4/3~\pi~r^3$

$$V_{atom} = 4/3 \ \pi \ (0.5 \ \mathring{A})^3 = 0.52 \ \mathring{A}^3$$

Packing efficiency = $2.08 \text{ Å}^3 / 2.80 \text{ Å}^3 = 74 \text{ }\%$

2) Copper has an atomic radius of 1.28 Å, an fcc crystal structure and an atomic weight of 63.5 g/mol. Calculate the theoretical density of Cu (measured value: 8.94 g/cm³).

$$\rho = n A / V N$$

n = number of atoms in unit cell; A = atomic weight

V = volume of the unit cell; $N = \text{Avogadro's number } (6.023 \text{ x } 10^{23} \text{ atoms/mol})$

cell length:

$$a^2 + a^2 = (2 d)^2 = (4 r)^2 \rightarrow a^2 = 8 r^2 = 4 r^2 2$$

$$a = 2 r 2^{0.5}$$

cell volume: $a^3 = 8 r^3 2 2^{0.5} = 16 r^3 2^{0.5}$

radius: $r = 1.28 \text{ Å} = 128 \text{ pm} = 128 \text{ } 10^{-12} \text{ m} = 128 \text{ } 10^{-10} \text{ cm} = 1.28 \text{ } 10^{-8} \text{ cm}$

density: $\rho = 4$ atoms x 63.5 g/mol / 16 $2^{0.5}$ (1.28 10^{-8} cm) 3 6.023 10^{23} atoms/mol = 8.89 g/cm 3

3) What is the formula of a compound that crystallizes with lithium ions occupying all of the tetrahedral holes in a cubic-closed packed array of sulfide ions?

There are 2N tetrahedral holes in ccp arrays \rightarrow Li₂S

4) How many Cl^- ions surround a Na^+ ion and what is the geometric description of the coordination around the Na^+ ion? The ionic radii for Na^+ and Cl^- are 99 and 181 pm (1 pm = 10^{-12} m) respectively. What is the cation to anion radius ratio in this structure? In view of this ratio, do the neighboring chloride ions touch each other?

There are six Cl⁻ ions surrounding each Na⁺ ion. Such a coordination forms an octahedron.

The cation to anion radius ratio = 99/181 = 0.547. If the cations fit the *octahedral holes* precisely, the radius ratio would be 0.414. Thus the chloride ions do not touch each other.

5) How many ions of each are contained in the face-centered unit cell of NaCl? The specific gravity of NaCl is 2.165 g/cm³, what is the cell edge length of the unit cell.

Recall that the unit cells of ccp contains 4 atoms, it is easy to figure out that the unit cell contains 4 each of sodium and chloride ions.

The atomic masses for Na and Cl are 23.0 and 35.5 respectively. Assume the cell edge length to be a, then we have

Solving for a gives $a = 5.64 \times 10^{-8} \text{ cm} = 564 \text{ pm}$